Terrestrial Hydrometeorology

W. James Shuttleworth

WILEY-BLACKWELL

TERRESTRIAL HYDROMETEOROLOGY

W. JAMES SHUTTLEWORTH

381/4467 Leibniz Universität Hannover

Institut für Meteorologie und Klimatologie Herrenhäuser Str. 2 - 30419 Hannover

A John Wiley & Sons, Ltd., Publication

Contents

preword	xvi
eface	xviii
cknowledgements	xix
Terrestrial Hydrometeorology and the Global Water Cycle Introduction Water in the Earth system Components of the global hydroclimate system Atmosphere Hydrosphere Cryosphere Lithosphere Biosphere	1 1 2 4 5 8 9 9 9
Anthroposphere	10
Important points in this chapter	12
Water Vapor in the Atmosphere Introduction Latent heat Atmospheric water vapor content Ideal Gas Law Virtual temperature Saturated vapor pressure Measures of saturation Measuring the vapor pressure of air Important points in this chapter	14 14 15 16 17 18 20 21 23
Vertical Gradients in the Atmosphere Introduction Hydrostatic pressure law Adiabatic lapse rates Dry adiabatic lapse rate Moist adiabatic lapse rate Environmental lapse rate Vertical pressure and temperature gradients Potential temperature Virtual potential temperature	25 25 26 27 27 28 28 28 29 30 31
	reword eface knowledgements Terrestrial Hydrometeorology and the Global Water Cycle Introduction Water in the Earth system Components of the global hydroclimate system Atmosphere Hydrosphere Cryosphere Lithosphere Biosphere Anthroposphere Important points in this chapter Water Vapor in the Atmosphere Introduction Latent heat Atmospheric water vapor content Ideal Gas Law Virtual temperature Saturated vapor pressure Measures of saturation Measuring the vapor pressure of air Important points in this chapter Vertical Gradients in the Atmosphere Introduction Hydrostatic pressure law Adiabatic lapse rate Dry adiabatic lapse rate Environmental lapse rate Vertical pressure and temperature gradients Potential temperature Virtual potential temperature

viii Contents

	Atmospheric stability	32
	Static stability parameter	32
	Important points in this chapter	34
4	Surface Energy Fluxes	36
	Introduction	36
	Latent and sensible heat fluxes	37
	Energy balance of an ideal surface	38
	Net radiation, R_n	38
	Latent heat flux, λE	39
	Sensible heat flux, <i>H</i>	39
	Soil heat flux, G	39
	Physical energy storage, S_t	40
	Biochemical energy storage, P	40
	Advected energy, A_d	41
	Flux sign convention	41
	Evaporative fraction and Bowen ratio	45
	Energy budget of open water	46
	Important points in this chapter	46
5	Terrestrial Radiation	48
	Introduction	48
	Blackbody radiation laws	49
	Radiation exchange for 'gray' surfaces	51
	Integrated radiation parameters for natural surfaces	52
	Maximum solar radiation at the top of atmosphere	54
	Maximum solar radiation at the ground	56
	Atmospheric attenuation of solar radiation	58
	Actual solar radiation at the ground	59
	Longwave radiation	59
	Net radiation at the surface	62
	Height dependence of net radiation	63
	Important points in this chapter	64
6	Soil Temperature and Heat Flux	66
	Introduction	66
	Soil surface temperature	66
	Subsurface soil temperatures	67
	Thermal properties of soil	68
	Density of soil, ρ_s	69
	Specific heat of soil, c_s	70
	Heat capacity per unit volume, C_s	70
	I nermal conductivity, k_s	70
	I nermal diffusivity, α_s	71
	Formal description of soil heat flow	71
	I hermal waves in homogeneous soil	72
	Important points in this chapter	75

Contents | ix

7	Measuring Surface Heat Fluxes	77
	Introduction	77
	Measuring solar radiation	77
	Daily estimates of cloud cover	77
	Thermoelectric pyranometers	78
	Photoelectric pyranometers	79
	Measuring net radiation	80
	Measuring soil heat flux	81
	Measuring latent and sensible heat	82
	Micrometeorological measurement of surface energy fluxes	83
	Bowen ratio/energy budget method	83
	Eddy correlation method	85
	Evaporation measurement from integrated water loss	87
	Evaporation pans	88
	Watersheds and lakes	89
	Lysimeters	90
	Soil moisture depletion	91
	Comparison of evaporation measuring methods	91
	Important points in this chapter	94
8	General Circulation Models	96
	Introduction	96
	What are General Circulation Models?	96
	How are General Circulation Models used?	98
	How do General Circulation Models work?	100
	Sequence of operations	100
	Solving the dynamics	102
	Calculating the physics	103
	Intergovernmental Panel on Climate Change (IPCC)	104
	Important points in this chapter	105
9	Global Scale Influences on Hydrometeorology	107
	Introduction	107
	Global scale influences on atmospheric circulation	107
	Planetary interrelationship	109
	Latitudinal differences in solar energy input	109
	Seasonal perturbations	109
	Daily perturbations	109
	Persistent perturbations	109
	Contrast in ocean to continent surface exchanges	109
	Continental topography	109
	Temporary perturbations	110
	Perturbations in oceanic circulation	110
	Perturbations in atmospheric content	110
	Perturbations in continental land cover	110
	Latitudinal imbalance in radiant energy	110

x Contents

	Lower atmosphere circulation	111
	Latitudinal bands of pressure and wind	111
	Hadley circulation	112
	Mean low-level circulation	113
	Mean upper level circulation	115
	Ocean circulation	116
	Oceanic influences on continental hydroclimate	118
	Monsoon flow	118
	Tropical cyclones	119
	El Niño Southern Oscillation	120
	Pacific Decadal Oscillation	122
	North Atlantic Oscillation	123
	Water vapor in the atmosphere	123
	Important points in this chapter	126
10		100
10	Formation of Clouds	128
	Introduction	128
	Cloud generating mechanisms	129
	Cloud condensation nuclei	131
	Saturated vapor pressure of curved surfaces	132
	Cloud droplet size, concentration and terminal velocity	133
	Ice in clouds	134
	Cloud formation processes	135
	Thermal convection	135
	Foehn effect	136
	Extratropical fronts and cyclones	138
	Cloud genera	140
	Important points in this chapter	141
11	Formation of Precipitation	143
	Introduction	143
	Precipitation formation in warm clouds	144
	Precipitation formation in other clouds	146
	Which clouds produce rain?	148
	Precipitation form	149
	Raindrop size distribution	150
	Rainfall rates and kinetic energy	151
	Forms of frozen precipitation	151
	Other forms of precipitation	152
	Important points in this chapter	153
12	Precipitation Measurement and Observation	155
	Introduction	155
	Precipitation measurement using gauges	156
	Instrumental errors	157
	Site and location errors	157

Contents | xi

	Gauge designs		160
	Areal representativeness of gauge measurements		162
	Snowfall measurement		165
	Precipitation measurement using ground-based radar		168
	Precipitation measurement using satellite systems		171
	Cloud mapping and characterization		171
	Passive measurement of cloud properties		172
	Spaceborne radar		173
	Important points in this chapter		174
13	Precipitation Analysis in Time		176
	Introduction		176
	Precipitation climatology		177
	Annual variations		177
	Intra-annual variations		177
	Daily variations		180
	Trends in precipitation		181
	Running means		182
	Cumulative deviations		183
	Mass curve		184
	Oscillations in precipitation		186
	System signatures		187
	Intensity-duration relationships		189
	Statistics of extremes		190
	Conditional probabilities		195
	Important points in this chapter		196
14	Precipitation Analysis in Space		198
	Introduction		198
	Mapping precipitation		199
	Areal mean precipitation		200
	Isohyetal method		200
	Triangle method		202
	Theissen method		202
	Spatial organization of precipitation		203
	Design storms and areal reduction factors		205
	Probable maximum precipitation		207
	Spatial correlation of precipitation		209
	Important points in this chapter		211
15	Mathematical and Conceptual Tools of Turbulence		213
	Introduction		213
	Signature and spectrum of atmospheric turbulence		213
	Mean and fluctuating components		216
	Rules of averaging for decomposed variables		217
	Variance and standard deviation		219

xii | Contents

	Measures of the strength of turbulence		220
	Mean and turbulent kinetic energy		220
	Linear correlation coefficient		221
	Kinematic flux		223
	Advective and turbulent fluxes		225
	Important points in this chapter		229
16	Equations of Atmospheric Flow in the ABL		231
	Introduction		231
	Time rate of change in a fluid		232
	Conservation of momentum in the atmosphere		234
	Pressure forces		235
	Viscous flow in fluids		236
	Axis-specific forces		239
	Combined momentum forces		242
	Conservation of mass of air		243
	Conservation of atmospheric moisture		244
	Conservation of energy		245
	Conservation of a scalar quantity		246
	Summary of equations of atmospheric flow		247
	Important points in this chapter		247
17	Equations of Turbulent Flow in the ABL		248
	Introduction		248
	Fluctuations in the ideal gas law		248
	The Boussinesq approximation		249
	Neglecting subsidence		250
	Geostrophic wind		251
	Divergence equation for turbulent fluctuations		252
	Conservation of momentum in the turbulent ABL		252
	Conservation of moisture, heat, and scalars		254
	in the turbulent ABL		254
	Neglecting molecular diffusion		255
	Important points in this chapter		258
18	Observed ABL Profiles: Higher Order Moments		259
	Introduction		259
	Nature and evolution of the ABL		259
	Daytime ABL profiles		261
	Nighttime ABL profiles		263
	Higher order moments		265
	Prognostic equations for turbulent departures		265
	Prognostic equations for turbulent kinetic energy		269
	Prognostic equations for variance of moisture and heat		271
	Important points in this chapter		276

19	Turbulent Closure, K Theory, and Mixing Length	277
	Introduction	277
	Richardson number	277
	Turbulent closure	279
	Low order closure schemes	280
	Local, first order closure	281
	Mixing length theory	283
	Important points in this chapter	288
20	Surface Layer Scaling and Aerodynamic Resistance	289
	Introduction	289
	Dimensionless gradients	290
	Obukhov length	292
	Flux-gradient relationships	293
	Returning fluxes to natural units	294
	Resistance analogues and aerodynamic resistance	296
	Important points in this chapter	299
21	Canopy Processes and Canopy Resistances	300
	Introduction	300
	Boundary layer exchange processes	301
	Shelter factors	306
	Stomatal resistance	308
	Energy budget of a dry leaf	310
	Energy budget of a dry canopy	311
	Important points in this chapter	314
22	Whole Canopy Interactions	316
	Introduction	316
	Whole-canopy aerodynamics and canopy structure	317
	Excess resistance	319
	Roughness sublayer	321
	Wet canopies	323
	Equilibrium evaporation	325
	Evaporation into an unsaturated atmosphere	327
	Important points in this chapter	332
23	Daily Estimates of Evaporation	334
	Introduction	334
	Daily average values of weather variables	335
	Temperature, humidity, and wind speed	335
	Net radiation	337
	Open water evaporation	339
	Reference crop evapotranspiration	341
	Penman-Monteith equation estimation of $E_{_{RC}}$	342

xiv | Contents

	Radiation-based estimation of E_{RC}	344
	Temperature-based estimation of E_{RC}	345
	Evaporation pan-based estimation of $E_{_{RC}}$	346
	Evaporation from unstressed vegetation: the Matt-Shuttleworth	
	approach	348
	Evaporation from water stressed vegetation	353
	Important points in this chapter	355
24	Soil Vegetation Atmosphere Transfer Schemes	359
	Introduction	359
	Basis and origin of land-surface sub-models	359
	Developing realism in SVATS	362
	Plot-scale, one-dimensional 'micrometeorological' models	364
	Improving representation of hydrological processes	367
	Improving representation of carbon dioxide exchange	368
	Ongoing developments in land surface sub-models	370
	Important points in this chapter	373
25	Sensitivity to Land Surface Exchanges	380
	Introduction	380
	Influence of land surfaces on weather and climate	381
	A. The influence of existing land-atmosphere interactions	383
	1. Effect of topography on convection and precipitation	383
	2. Contribution by land surfaces to atmospheric	
	water availability	385
	B. The influence of transient changes in land surfaces	385
	1. Effect of transient changes in soil moisture	385
	2. Effect of transient changes in vegetation cover	388
	3. Effect of transient changes in frozen precipitation cover	389
	4. Combined effect of transient changes	391
	C. The influence of imposed persistent changes in land cover	392
	1. Effect of imposed land cover change on near	
	surface observations	392
	2. Effect of imposed land-cover change on	
	regional-scale climate	393
	3. Effect of imposed heterogeneity in land cover	395
	Important points in this chapter	398
26	Example Questions and Answers	404
	Introduction	404
	Example questions	404
	Question 1	404
	Question 2	405
	Question 3	407
	Question 4	408
	Question 5	410

441

	Question 6				411
	Question 7				412
	Question 8		o,		414
	Question 9				416
	Question 10				418
E	xample Answers				418
	Answer 1				418
	Answer 2				420
	Answer 3				420
	Answer 4				425
	Answer 5				426
	Answer 6				427
	Answer 7				429
	Answer 8				432
	Answer 9				434
	Answer 10				437

Index

COMPANION WEBSITE

This book has a companion website:

www.wiley.com/go/shuttleworth/hydrometeorology with Figures and Tables from the book for downloading